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Abstract. There is much interest in studying evolutionary games in structured populations, in order to
understand how cooperation emerges in communities of egoistic agents. In this paper, we consider a new
mechanism for cooperation to survive on networks. Agents are designed to reproduce offspring in proportion
to their fitness, i.e., the aggregate payoffs they collected in the previous Prisoner’s Dilemma game with
neighbours. The population then evolves either by an individual giving birth to an offspring that takes
over a random neighbour (birth-death process dynamics as the competition for resources already occupied
by others) or by an individual constructing one new site from unexploited resources for its offspring
(birth process dynamics as the competition for the unexploited resources which induces the extension of
system). The underlying interaction network thus evolves and expands simultaneously with the population
dynamics. The birth process dynamics is proved to be one new route that favours cooperators, under which
cooperators can successfully resist the invasion of defectors in spite of large cost. Furthermore, under this
“birth-death & birth” mechanism, the resulting network has a scale-free degree distribution, a small-world
property, and hierarchical topology.

PACS. 89.75.Hc Networks and genealogical trees – 87.23.Kg Dynamics of evolution – 02.50.Le Decision
theory and game theory – 87.23.Ge Dynamics of social systems

1 Introduction

Much attention has been paid to the statistical physics
of complex systems with theoretical game interactions
recently. One example is evolutionary game theory on
complex networks, which has been the standard frame-
work to address one of the most fascinating challenges,
how cooperation may survive in communities of egoistic
agents. Most recent studies in this area have considered a
static underlying network defining the possible competi-
tive encounters [1–6]. In these works, the effect of network
structures on the evolution and stability of cooperation
has been studied. Complex networks composed of a large
set of interconnected vertices of various kinds are ubiqui-
tous in nature and society. Examples include the Internet,
the World Wide Web, coauthorship and citation networks
of scientists, cellular and metabolic networks, etc. Many
properties of these complex networks have been reported,
such as, scale-free degree distribution [8,9], small-world
property [7], hierarchical topology [10,11], and so on. Re-
cently there is an increasing interest to understand the
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emergence of complex network structures in diverse natu-
ral systems.

As a natural extension of those aforementioned stud-
ies, an even more intriguing task is to understand how
game dynamics influences network topology. Zimmermann
et al. firstly discussed this question by showing a network
self-organized into a steady state with highly connected
cooperators [12]. Also, under the consideration that theo-
retical game models on evolving networks may provide a
fresh view on the emergence of complex networks in sys-
tems where strategic interactions occur, there have been
several recent studies of coevolutionary games on net-
works [14,15,13]. However, these studies only discussed
the coevolution of the network with a fixed size. In con-
trast, it is known that most real-life networks are open
and they form by the continuous addition of new vertices
to the system, thus the network size N increases through-
out the lifetime of the network [8,9]. That is to say, there
exist new resources that can be exploited for the mainte-
nance and expansion of systems. Inspired by this point, we
suggest that the study of a growing interaction network
coevolving with game dynamics is valuable.

This paper addresses the coevolutionary dynamics of
growing interaction networks and the Prisoner’s Dilemma
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(PD) game. We consider the multi-agent system evolv-
ing on networks under natural selection. Each agent in
the system competes for the resources by reproduction.
In evolutionary biology, reproduction can be genetic or
cultural [16], and the agent who does well will have a
higher chance to reproduce or to be imitated by others.
In our model, agents play the PD game with their local
neighbours, and collect aggregate payoffs. They will be se-
lected for reproduction in proportion to fitness, a measure
of the agent’s performance which corresponds to the ag-
gregate payoff. Considering agents’ competition not only
for the resources already occupied by others, but also for
the new resources unexploited, reproduction processes are
designed to take place either via the birth-death (BD)
process or birth (B) process dynamics. The probability of
which process to choose is controlled by a free parame-
ter p. Here the BD process dynamics stands for agents’
competition for the already occupied resources, that is an
individual giving birth to an offspring that takes over a
random neighbour. The B process dynamics depicts the
exploitation of new resources, that is an individual con-
structing one unexploited new site for its offspring rather
than invading any neighbours. This process induces the
expansion of the system and the underlying interaction
network. It has been proved that, the natural selection of
the BD process can never favour cooperators [16]. How-
ever, we show that the exploitation of new resource, i.e.,
the B process dynamics changes the fate of cooperators.
Cooperators can resist the invasion of defectors under the
natural selection of BD & B processes. Moreover, the un-
derlying interaction network is characterized by interest-
ing topological properties.

2 The model

In the PD game there are two strategists, cooperator and
defector. A cooperator (C) is someone who pays a cost c
for every partner, and the partner receives a benefit b > c.
A defector (D) pays no cost and does not distribute any
benefits to anyone. The payoff matrix can be written as:

C D
C
D

(
b − c −c

b 0

)
.

(1)

Here, we set b = 1 for simplification without loss of gen-
erality. It is easy to see from the payoff matrix that defec-
tors perform better irrespective of the opponent’s strategy.
In an unstructured population, where all individuals are
equally likely to interact with each other, defectors have
a higher average payoff than unconditional cooperators.
Therefore, natural selection increases the relative abun-
dance of defectors and drives cooperators to extinction.
These evolutionary dynamics hold for the deterministic
setting of the replicator equation [17,18] and for stochas-
tic game dynamics of finite populations [19].

In our model, the agents playing the evolutionary
game occupy the vertices of the underlying network which

evolves with game dynamics. The edges of the network de-
note links between individuals in terms of game dynamical
interaction and biological reproduction. A cooperator that
has k neighbours of which l are cooperators will get pay-
off l − ck. A defector connected to k′ cooperators will get
payoff k′, for it pays no cost to neighbours but receives
the benefit by exploiting neighbouring cooperators. The
fitness of an agent is given by f = 1 − w + wP , where P
denotes the agent’s aggregate payoff throughout one gen-
eration and w measures the intensity of selection. Follow-
ing previous work [16], we just consider the weak selection
case with w = 0.01.

The system evolves according to the following rule: In
each generation, agents play the PD game with neighbours
and collect aggregate payoffs. Then, one agent i in the sys-
tem is selected with probability Π(fi) = fi/F for repro-
duction, with fi the fitness of agent i, and F = Σjfj the
total fitness of the system. This selected agent takes the
BD process with probability p, or the B process instead
with probability 1 − p. In the BD process, one randomly
chosen neighbour of this selected agent is replaced by its
offspring. In the B process this agent constructs one unex-
ploited new site for its offspring without invading any of
its neighbours. That is to say, one new vertex occupied by
the offspring will be inserted into the environment of the
parent (i.e. the selected agent) with m new edges, among
which m − 1 edges are linked to randomly chosen neigh-
bours of the parent and one edge is linked to the parent
itself. Here, multiple edges or self-edges are not allowed.
The network size will increase by one if the B process
takes place. After t time steps this algorithm produces a
network with approximately Nt = N0 + pt vertices and
N0
2 k0 + mpt edges. Here, N0 and k0 respectively are the

size and average degree of the initial network.
Simulations are carried out from an initial network

which is a one-dimensional lattice with periodic bound-
ary conditions and coordination number z = 4 [20]. The
initial network size N0 is set as 60. In the birth process,
the number of edges one new vertex brings in is m = 4,
which is equal to the coordination number z. In the initial
state, cooperators and defectors are uniformly distributed
among all the sites.

3 Results and analysis

The B process supports the intuitive result that agents
with high fitness will have a higher chance to exploit new
resources, opening a new route to the evolution of cooper-
ation: Those cooperators whose fitness are comparatively
high will have more chance to generate offspring, and at
the same time let their offsprings possess their good envi-
ronment. However, the defectors, who are competing for
the reproduction chance against cooperators, will also take
advantage of the B process; and moreover, the develop-
ment of defectors will deteriorate cooperators’ environ-
ment further. Therefore, it remains an open problem who
— defectors or cooperators — will be able to profit from
the B process, and to which extent.



Z.-G. Huang et al.: Coevolutionary dynamics of network and game 495

3.1 Birth-death process

Firstly, let us consider the effect of the pure BD process.
At each time step, one agent i is selected for reproduction
with the foresaid probability Π(fi) proportional to fitness,
and the offspring replaces a randomly chosen neighbour
of i. The state of agent i is denoted as s(i), which equals
0 or 1 when it is a defector or a cooperator, respectively.
Then, the probability for the offspring to replace those
neighbours with states different from s(i) is,

Prob(i, s(i))=
∑

j

Aij

ki
{s(i)[1 − s(j)] + s(j)[1 − s(i)]}.(2)

Here, Aij is the adjacency matrix whose elements equal
to 1 if ij are connected and zero otherwise (j = 1, . . . , N).
Thus, we know that, for an elemental update of BD pro-
cess, the number of agents with state S (D or C), denoted
as NS , will increase by one with probability INS+1, and
decrease by one with probability INS−1, where

INS+1 =
N∑

i=1,s(i)=S

Π(fi)Prob(i, s(i)) (3)

INS−1 =
N∑

i=1,s(i)=S′
Π(fi)Prob(i, s(i)). (4)

Here, state S′ represents the opposite state of S. We
can see that, the BD process of the agent surrounded
by the identical-strategy neighbours would make no sense
(the case with Aij = 1 and s(i) = s(j) in Eq. (2)),
and only that of the agents right at the boundary be-
tween cooperators and defectors matter (the case with
Aij = 1 and s(i) �= s(j) in Eq. (2)). However, cooper-
ators at the boundary are always at a disadvantage for
they are exploited by defectors. The pair-approximation
and diffusion-approximation calculations given in refer-
ence [16] have proved that the BD selection can never
favour cooperators, and defectors always dominate the
whole system.

3.2 Birth-death & birth process

However, cooperators can survive when there exist unex-
ploited resources, which ensure the B process dynamics
of the high-fitness agents. Figure 1 plots the probability
densities of cooperators ρC as a function of network size
during evolution of the network under birth-death & birth
(BD & B) selection (take the case with c = 0.8 and p = 0.9
as an example). It can be easily seen from the figure that
after a long time evolution, the frequency of cooperator
ρC finally evolves to nonzero plateau values denoted as
ρ∞, in spite of the high cost c and the rare occurrence of
the B process (i.e., large p). This remarkable result shows
clearly that cooperators benefit more from the B process
than defectors.

We argue that this can be understand as follows: co-
operator’s offspring will not only take advantage of the

Fig. 1. The probability density of cooperators ρC at the time
when the nth new vertex is inserted, until the system size
reaches N = 104, with a high cost c = 0.8 and p = 0.9. The
three different symbols correspond respectively to the evolution
of the initial network with three different initial distributions
of C and D.

good environment of its parent, but also of the parent’s
protection. In return, as a neighbouring cooperator, the
offspring will also protect its parent. This mutual protec-
tion may increase cooperators’ fitness, while defectors do
not have this good nature.

Now, let us consider the B process of a cooperator C1

and a defector D1. For C1 with k neighbours and D1 with
k′ neighbours, their payoffs will be,

PC1 = ηk − ck (5)
PD1 = η′k′. (6)

Here, η (or η′) is the fraction of cooperators among the
neighbours of C1 (or D1). Then, one get the fitness fC1 =
1−w+wPC1 , and fD1 = 1−w+wPD1 . In the B process,
their new offsprings C2 and D2 are inserted into their
environments, and new environments are established as a
consequence. The payoffs of the parents and the offsprings
turn out to be,

P ′
C1

= ηk − ck + 1 − c = PC1 + 1 − c (7)

P ′
D1

= η′k′ = PD1 (8)
PC2 = 1 + η(m − 1) − cm (9)
PD2 = η′(m − 1). (10)

Here, P ′
C1

and P ′
D1

respectively are the new payoffs of C1

and D1 after their B processes. From equations (7) and
(8) one can find that, reproducing an offspring is benefi-
cial to the cooperator parent, for the payoff of the parent
C1 increases by ∆PC1 = 1 − c compared to the previous
state. On the other hand, reproduction does not favour a
defector’s parent (see Eq. (8)).

For the purpose of comparison, let us consider the B
processes of C1 and D1 with the same fitness and the same
number of neighbours, which corresponds to PC1 = PD1

and k = k′ (Fig. 2 illustrates the special case with k = 5
and m = 4). From equations (5) and (6), we get

η′ = η − c. (11)
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Fig. 2. The black cycles are defectors, and the white cycles are
cooperators. As is shown, the payoffs of C1 and D1 are both
equal to 2 before the B process (with b = 1 and c = 0.4). The
C2 and D2 respectively are the offsprings of C1 and D1.

Then, one can easily obtain the following relations from
equations (7) to (11),

P ′
C1

= P ′
D1

+ 1 − c (12)
PC2 = PD2 + 1 − c. (13)

Interestingly, in the case that the parents’ fitness and de-
gree are the same, after the B process, both the parent and
the offspring of cooperators can perform better than those
of defectors. It can be imagined that, in the next genera-
tion the better performance of cooperators will bring them
more chance to be selected for reproduction. Thus, coop-
erators obviously take advantage of B process more than
defectors.

The above analysis of the two process dynamics and
the sketch map of the simple case exhibits a clear picture
as to why cooperators can survive during the network evo-
lution under BD & B selection. The BD process dynamics
(with probability p) favours defectors, while the B process
dynamics (with probability 1−p) results in the prosperity
of cooperators. Then the system under BD & B selection
evolves to a stationary regime with the coexistence of co-
operators and defectors.

As shown in Figure 1, the final plateau value ρ∞ is
sensitive to the initial distribution of C and D. We thus
study the statistical properties of simulation results. Re-
sults from 2000 different initial distributions of C and D
on the initial network are considered. The histogram of
ρ∞ denoted as ξ(ρ∞) are plotted in Figure 3. We can see
that the values ρ∞ depend on the dynamical parameters p
and c. For example, in the case with p = 0.95, the asymme-
try distribution biased to the small values appears. This
bias increases with the increment of cost. Figure 4a shows
the average value 〈ρ∞〉 over the 2000 simulation results as
a function of cost c. It is seen that the increment of the cost
will reduce the density of cooperators irrespective of the
value of p. Also, one can notice that the smaller value of p
corresponds to the smaller slope of the plots. That is to
say, in the coevolutionary process if more B processes take
place (smaller p), the fraction of cooperator in the system
will decrease slower with the increase of the cost. Thus, we
can say that, the effect of the B process counteracts the
harmful influence of the cost. In addition, from the figure
we know that even for the case with very high cost and
rare birth processes (such as c = 0.9 and p = 0.95 case),
cooperators still exist with a comparatively high density.

Fig. 3. The log-normal plots of the histogram of the values ρ∞,
denoted as ξ(ρ∞), from the simulation results of 2000 different
initial distributions of C and D. The four figures are the results
from cases with p = 0.2, 0.5, 0.8, and 0.95, respectively. The
system size N = 104, and the cost c = 0.1, 0.5, and 1.0.

Fig. 4. (a) The average value of the final plateau values ρ∞
from 2000 different initial distributions of C and D as a func-
tion of cost, with p = 0.1, 0.6, 0.8, 0.9, and 0.95, respec-
tively. (b) The slopes of the lines in (a) as a function of 1 − p.
The scaling behavior of the log-log plots implies the relation,
slope ∼ −(1 − p)−α. The dot line is power-law regression fit,
which gives an estimate of power-law exponent α � 0.454.

Furthermore, in Figure 4b we present the fitted slopes of
those plots in (a) as a function of 1 − p. It is noticeable
that the fitted slope scales as −(1− p)−α with α � 0.454.

3.3 The resulting networks

We next analyze some properties of the resulting network
from the evolutions under BD & B selection. We first cal-
culate the cumulative degree distributions (see Fig. 5). As
many real-life networks, the resulting networks obtained
from the cases with different dynamical parameters have
identically scale-free degree distribution, P (k) ∼ k−γ . Ta-
ble 1 lists the estimated power-law exponents γ for each
of the distributions of Figure 5, calculated using the max-
imum likelihood method with the bottom of the lowest
bin at Kmin = m [21]. It is interesting that these net-
works have similar power-law exponents as the BA net-
work [8,9]. We can explain this point as the result of their
two common ingredients, “growth” and “preferential at-
tachment” (PA). The reproduction proportional to fitness
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Fig. 5. Cumulative degree distributions of the resulting net-
works with size N = 104, 105, and 106 at different values of p
and c.

Table 1. The values of the power-law exponents γ of result-
ing networks with size N = 104, 105, and 106. Numbers in
parentheses give the standard error on the trailing figures.

p 0.4 0.9
c 0.1 0.9 0.1 0.9

104 3.05(2) 3.04(2) 3.04(2) 3.03(2)
105 3.056(7) 3.047(6) 3.058(6) 3.050(6)
106 3.056(2) 3.050(2) 3.057(2) 3.050(2)

Fig. 6. The log-normal plots of the average path length L as
a function of N , with different values of p and c.

in our model and the degree-PA mechanism proposed by
the BA model may induce structural similarity by rea-
son that the higher degree agents in our model have more
probability to gain larger profits in the game (i.e. to have
larger fitness). In spite of the similarity of degree distribu-
tion of the resulting networks and BA networks, further
analytical results will show that they are essentially dif-
ferent in some aspects.

The average path length and the clustering coefficient
of the evolving networks are plotted in Figures 6 and 7,
respectively. From the straight line form in the log-normal
figure of the average path length L, one get that L scales
logarithmically with the number of vertices, i.e., L ∼ ln N ,
which is coincident with the result in reference [22]. On the
other hand, we can see from Figure 7 that, for different

Fig. 7. The dependence of the clustering coefficient C on the
size of the network N . While for the resulting network from
BD & B selection (�) C is independent of N at large size, for
the scale-free BA model (©) C(N) decreases rapidly. Here we
take the case with p = 0.4 and c = 0.5 as an example.

values of p and c, the clustering coefficient of the result-
ing network increases with the network size N from the
initial value 0.5 to a larger value (about 0.62). When the
network size exceeds 104 the clustering coefficient becomes
independent of the size. On the contrary, the clustering co-
efficient of BA networks decreases with the network size
N (see Fig. 7). As we know, “small-world networks” are
characterized by a high degree of clustering and a small
average path length [23]. Thus, from the above analysis,
we can say the resulting networks from the evolution un-
der BD & B selection are small-world networks.

Besides the scale-free degree distribution and the
small-world property, hierarchical topology is also an im-
portant property of many realistic networks [10]. It was
mentioned in reference [11] that the clustering coefficient
of a vertex with k links in their deterministic scale-free
networks follows the scaling law

C(k) ∼ k−1, (14)

which characterizes the intrinsic hierarchy of networks.
We also study the hierarchy of the resulting networks by
this quantitative manner. After averaging over the clus-
tering coefficients of all the vertices for a given degree k,
the results C(k) as a function of vertex degree are ob-
tained. The average results over 1000 realizations are de-
picted in Figure 8, where the log-log plots of the C(k)
curves with exponents approximately equal to 1 demon-
strate that they follow equation (14). Figure 8a shows the
average results with p = 0.4 and c = 0.5 at different net-
work sizes. From the overlapping of the results at the small
size N = 500 and the larger sizes, we can see that the
scaling law emerges early in the evolution under BD &
B selection. Furthermore, from the results with different
values of dynamical parameters plotted in Figure 8b we
know that the hierarchical topology is a general property
in our model.
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Fig. 8. (a) The clustering coefficient C averaged over the re-
sults of given degree k, with p = 0.4 and c = 0.5 as an example.
The three different symbols correspond to the results at differ-
ent moments of the same evolution with system sizes N = 500,
2000 and 20000. (b) The correlation of clustering coefficient C
and degree k with different values of p and c. The results shown
here are averaged over 1000 realizations of the networks.

4 Conclusion

In summary, we have studied the coevolutionary Pris-
oner’s Dilemma game on an evolving network where each
agent competes for the chance to reproduce according to
the birth-death & birth selection rule. We find that the
birth process dynamics, in which agents make use of the
unexploited resources for reproduction, favours coopera-
tors. We thus argue that, the availability of unexploited
resources might be a new route for the emergence of coop-
eration in real-world systems. On the other hand, the un-
derlying interaction network in our model evolves driven
by game dynamics, and the resulting network is found to
have a scale-free degree distribution, a small-world prop-
erty, and hierarchical topology. Thus, our work also pro-
vides a mechanism for the evolution of complex networks
possibly relevant for real-world systems.
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